SSブログ

UNO R4で音楽演奏 [Arduino]

音楽演奏のスケッチをいろいろなバージョンで作ってきたけど、UNO R4でもやってみた。

・DAC(12bit)を使用
・正弦波は計算で作成
・音程も計算で作成
・レジスタ触らない
・ところどころブラッシュアップ

r4music.jpg
10kΩの可変抵抗の前に100kΩの抵抗を挟んで約10分の1に分圧したらボリュームとしてちょうどいい感じ。(理論上は40kΩかな)

楽譜の作成と定義のファイルは以前と同様。
https://hello-world.blog.ss-blog.jp/2022-07-04

// Uno R4 DAC Score Replay Sketch
#include "notes2.h"                     // note definition data (pitch(octave,scale) + length)
#define F_SAMP      50000               // sampling frequency (Hz) (divisor of 1,000,000 (usec))
#define MAX_TRACK   4                   // Maximum tracks
static uint16_t   SIN[256];             // array of sine wave
static uint16_t   OCT9[12];             // array subscript difference in the 9th octave
static const uint16_t Jesus[] = {       // J.S.Bach "Jesu, Joy of Man's Desiring"
  125 , 0 ,
  b4e , g4e , a4e , b4e , d5e , c5e , c5e , e5e , d5e , d5e , g5e , F5e , g5e , d5e , b4e , g4e , a4e , b4e ,
  e4e , d5e , c5e , b4e , a4e , g4e , d4e , g4e , F4e , g4e , b4e , d5e , g5hd,                           0 ,
  d4q       , F4e , g4q       , F4e , g4q       , a4e , b4q       , a4e , b4q       , g4e , e4q       , g4e ,       
  a4q       , F4e , g4q       , e4e , a3q       , c4e , b3w ,                                             0 ,
  g3qd            , e3qd            , c3qd            , b2qd            , e3qd            , d3qd            ,
  c3qd            , C3qd            , d3qd            , g2w ,                                             0 , 0 };
  
void setup(){
  uint16_t  i;
  analogWriteResolution(12);
  for(i=0; i<256; i++)  SIN[i]  = 16383.9 * (1 - cos(6.283185 * i / 256)) / 2;      // 14bit sine wave
  for(i=0; i< 12; i++)  OCT9[i] = (440 << 16) * pow(2, (i + 51) / 12.0) / F_SAMP;   // A4=440
}

void loop(){
  playR4( Jesus );
}

void playR4( const uint16_t *score ){ 
  uint8_t  Tracks = 0;                  // track count
  uint16_t note;                        // note (pitch(octave,scale) + length)
  uint16_t NoteCycle, n;                // reference note (96th note) cycle and its counter (n)
  uint16_t   p[MAX_TRACK];              // pointer for each track
  uint8_t  len[MAX_TRACK];              // note length (how many 96th notes)
  uint16_t   s[MAX_TRACK] = {0};        // waveform subscript  (s)  (x256)
  uint16_t  ds[MAX_TRACK] = {0};        //  and its difference (ds) (x256)
  uint16_t env[MAX_TRACK];              // sound envelope
  uint16_t atn = 0, Atn;                // attenuation counter and initial value
  // *** Preparing Scores ***
  Atn = 150 * F_SAMP / 1000 / 356;                  // attenuation half-life : 150 msec
  NoteCycle = F_SAMP *4*60 / score[0] / MIN_NOTE;   // reference note(96th note) cycles
  for( uint16_t i = 1; Tracks < MAX_TRACK; ) {      // Get track count and starting location
    if( score[i++] != 0 ) continue;     // Skip until 0 comes
    if( score[i]   == 0 ) break;        // If two 0s follow, end of data
    len[ Tracks ] = 1;                  // note length subtraction counter to 1
    p[ Tracks++ ] = i;                  // Get location in memory, Count up the tracks
  }
  // *** Playback ***
  n = Tracks;                           // To play immediately after the loop starts
  uint32_t  usInt = 1000000 / F_SAMP;   // sampling time interval(usec)
  uint32_t  usPre = micros();           // sampling time previous value(usec)
  do {
    if( --n < Tracks ) {                // Processing of score for each reference note length
      if( !--len[n] ) {
        note   = score[ p[n]++ ];
        len[n] = note & 0x00ff;         // The lower 8 bits are note length (Multiples of 96th notes)
        if( note & 0xff00 ) {           // If not a rest... (Leave a lingering sound even with rests)
           ds[n] = OCT9[ (note>>8) & 0x0f ] >> (9 - (note>>12));    // increment subscript (x256)
            s[n] = 0;                   // start of waveform cycle
          env[n] = 0xffff;              // the maximum amplitude initially
        }
      }
      if( !n ) n = NoteCycle;
    }
    switch( Tracks ) {                  // Change output by number of tracks
      case 1: analogWrite( DAC, ( SIN[ (s[0]+=ds[0])>>8 ] * env[0] ) >> 18 );  // 14x16=30bit >> 18 = 12bit
              break;
      case 2: analogWrite( DAC, ( SIN[ (s[0]+=ds[0])>>8 ] * env[0]
                                + SIN[ (s[1]+=ds[1])>>8 ] * env[1] ) >> 19 );  // 30/30(31bit)
              break;
      case 3: analogWrite( DAC, ( SIN[ (s[0]+=ds[0])>>8 ] * env[0]
                                + SIN[ (s[1]+=ds[1])>>8 ] * env[1]
                                + SIN[ (s[2]+=ds[2])>>8 ] * env[2] ) >> 20 );  // 30/30/30(31.5bit)
              break;
      case 4: analogWrite( DAC, ( SIN[ (s[0]+=ds[0])>>8 ] * env[0]
                                + SIN[ (s[1]+=ds[1])>>8 ] * env[1]
                                + SIN[ (s[2]+=ds[2])>>8 ] * env[2]
                                + SIN[ (s[3]+=ds[3])>>8 ] * env[3] ) >> 20 );  // 30/30/30/30(32bit)
    }
    if( !atn-- )            atn   = Atn;            // subtract attenuation counter
    if(  atn < Tracks ) env[atn] -= (env[atn]>>9);  // amplitude attenuation
    while( micros() - usPre < usInt );              // wait for next cycle
    usPre += usInt;
  } while( note );                      // Exit if note data is 0
  analogWrite( DAC, 0 );                // Set output to 0
}

nice!(0)  コメント(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。